
SAND2001–8695
Unlimited Release

Printed February 2002

Understanding Asynchronous Parallel Pattern Search

Tamara G. Kolda∗

Computational Sciences and Mathematics Research Department
Sandia National Laboratories
Livermore, CA 94551–9217

Virginia J. Torczon†

Department of Computer Science
College of William & Mary

P.O. Box 8795
Williamsburg, VA 23187–8795

ABSTRACT

Asynchronous parallel pattern search (APPS) is a nonlinear optimization algorithm
that dynamically initiates actions in response to events, rather than cycling through
a fixed set of search directions, as is the case for synchronous pattern search. This
gives us a versatile concurrent strategy that allows us to effectively balance the com-
putational load across all available processors. However, the semi-autonomous nature
of the search complicates the analysis. We concentrate on elucidating the concepts
and notation required to track the iterates produced by APPS across all participat-
ing processes. To do so, we consider APPS and its synchronous counterpart (PPS)
applied to a simple problem. This allows us both to introduce the bookkeeping we
found necessary for the analysis and to highlight some of the fundamental differences
between APPS and PPS.

Keywords: nonlinear optimization, asynchronous parallel optimization, pattern search,
global convergence, distributed computing, cluster computing.

∗Corresponding author. Email: tgkolda@sandia.gov. This research was sponsored by the
Mathematical, Information, and Computational Sciences Division at the United States Department
of Energy and by Sandia National Laboratories, a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department of Energy under
contract DE-AC04-94AL85000.
†Email: va@cs.wm.edu. This research was funded by the Computer Science Research Institute at

Sandia National Laboratories and by the National Science Foundation under Grant CCR-9734044.

3



This page intentionally left blank.

4



1 Introduction

In this paper, we consider parallel variants of pattern search to solve nonlinear un-
constrained optimization problems of the form

min
x∈Rn

f(x), where f : Rn → R. (1)

We assume that the evaluation of f is computationally expensive, hence our interest in
using either distributed or parallel computing environments to solve the problem. We
concentrate on the parallelization of the search strategy, rather than on the evaluation
of f , though the techniques we discuss here can be adapted to handle problems for
which the computation of f also can be distributed. While we assume that the
function f is continuously differentiable, we further assume that ∇f is unavailable
and that approximations to ∇f are not reliable. For such problems, pattern search
methods are one possible solution technique since they neither require nor explicitly
estimate derivatives. Pattern search methods also have a long history of success when
applied to such problems (see [3] for some recent examples).

While software for parallel optimization methods that do not require estimates
of derivatives has been available for some time (e.g., see [6, 5]), here we examine
the question of parallelizing pattern search. Our goal is to address the fact that we
often see significant variance in the times required to finish the evaluation of a given
function f . In [3] we detail factors that can contribute to such variances. The bottom
line, though, is that if we rely on synchronized parallel optimization algorithms, then
the variations in the function evaluation time can lead to idle time on the processes
during the course of the search. Idle time means that computational resources are
wasted as one or more processes wait for the rest of the participating processes to
catch up.

We investigate the behavior of both an “obvious” parallel variant of pattern search
(PPS) as well as asynchronous parallel pattern search (APPS) [3], which was designed
to eliminate the idle time that plagues synchronized parallel search techniques such
as PPS. Although we designed APPS with an eye toward analysis, it was a secondary
consideration during the development of the algorithm and software. We now have
finished the analysis of APPS [4]. Here we highlight some of the differences between
PPS and APPS from an analytic point of view.

Specifically, we consider both PPS and APPS applied to a simple example. Using
this example, we introduce the bookkeeping that we found necessary for the analysis
and illustrate the fundamental differences between APPS and PPS. In particular, we
concentrate on the question of tracking iterates across processes in the asynchronous
case since that is what most complicates the analysis.

We emphasize that the system of bookkeeping we introduce here is not needed for
the actual implementation of APPS. However, we found the bookkeeping necessary to
prove that, under the usual assumptions for pattern search analysis, all the processes
share a common accumulation point that is also a stationary point of (1).

5



2 An illustrative example

To illustrate the behavior of APPS we use the problem

min
x∈R2

f(x1, x2) = (x1 − 3)2 + (x2 − 2)2 + (x1 + x2 − 4)2, (2)

which is given as an illustrative exercise in [1]. The global minimizer of (2) is x∗ =(
8
3
, 5

3

)T
, with f(x∗) = 1

3
.

We assume we have p = 4 processes, and let P = {1, . . . , p} denote the set
of processes. Each process is in charge of a single search direction. We let D =
{d1, . . . , dp} denote the set of search direction. For this example, we choose the
positive and negative unit coordinate vectors to form the set of search directions; i.e.,

D =

{(
1
0

)
,

(
0
1

)
,

(
−1

0

)
,

(
0
−1

)}
.

We choose x0 = (3, 5)T as the initial iterate and ∆0 = 1 as the initial value of the
step-length control parameter.

3 PPS

Here we outline our variant of parallel pattern search (PPS), to which the existing
global analysis [7] immediately applies. We then illustrate the potential for idle time
when using this approach.

3.1 Preliminary Notation

We start by adopting the usual notion of an infinite sequence of iterations from
k = 1, 2,.... At the end of iteration k − 1 (we treat k = 0 as a special case to handle
the initialization of the search), we assume every process knows the best point xk−1,
where by “best point” we mean that f(xk−1) is the best known value of f . We
assume that if multiple points produce the best known value of f , ties are broken in a
predictable fashion. Associated with xk−1 is the step-length control parameter ∆k−1.
Each process i ∈ P ends iteration k− 1 by constructing its trial point xk−1 + ∆k−1 di
and initiating an evaluation of f(xk−1 + ∆k−1 di). The simultaneous start of the
function evaluations at the trial points on each of the p processes signals the start of
iteration k.

When all of the participating processes are finished with their evaluation of f ,
they communicate these values to each other and determine the new values of xk and
∆k as follows. If there exists i ∈ P such that

f(xk−1 + ∆k−1di) < f(xk−1),

6



then we say that k ∈ S where S denotes the set of successful iterations. Furthermore,
we define ω(k) = i to be the index of the process that produced the decrease. In
other words, ω : S → P . Using these definitions, the update rules are then

xk =

{
xk−1 + ∆k−1 dω(k), if k ∈ S and
xk−1, otherwise; and

∆k =

{
λk ∆k−1, if k ∈ S and
θk∆k−1, otherwise.

For this illustration, we choose θk = 1
2

for all k 6∈ S. We choose λk = 2 if w(k) = w(k−
1), i.e., the same direction produces decrease for two or more successive iterations;
otherwise, we choose λk = 1.

3.2 Applying PPS

In Figure 1 we illustrate the first three iterations of PPS applied to (2). We show
the level sets of f in the background. We use open circles to indicate the points at
which the function is being evaluated. We use the symbol ‘•’ inside an open circle to
indicate the best known point. The step from the best known point to each of the
trial points is also shown.

For k > 0, the results from the previous time step are shown in the background
in gray. There are three possible outcomes. First, a trial point from the previous
iteration may have become a new best point, in which case the search has moved to
that point. Another alternative is that the evaluation at a trial point did improve
upon the best known value at that iteration, indicated with the symbol ‘?’ inside
an open circle, but it was superseded by an even better point from another process.
Finally, it is possible that the value at the trial point did not improve upon the best
known value at that iteration, as indicated with the symbol ‘×’ inside an open circle.

For this example, the first three iterations are successful, so k ∈ {1, 2, 3} ⊆ S.
Note that we expand the length of the step for iterations 2 and 3 since we have taken
two or more successful steps, successively, along the same direction. Specifically,
λk = 1 for k = 1 and λk = 2 for k ∈ {2, 3}.

3.3 Why PPS may waste computational resources

Implicit in the discussion above is the assumption that all the function evaluations
finish at more or less the same time. That assumption, while convenient, is usually
not what occurs for the problems that motivated APPS. This shortcoming can be
attributed to any number of factors, as described in detail in [3]. The net effect of
this discrepancy between what we have assumed and what we actually see in practice
is that we may have processes that are sitting idle while waiting for other processes
to finish their evaluation of f .

7



−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(a) k = 0

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(b) k = 1

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(c) k = 2

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(d) k = 3

Figure 1: Four iterations of PPS applied to (2).

To illustrate this effect, we introduce the notion of a global clock, as is done
in other proofs for asynchronous algorithms; e.g., see [2]. We let the infinite set
T = {1, 2, . . .} denote the index of time steps. We assume the time steps are of
fine enough resolution that at most one event occurs per time step, per process. We
assume that one time step is no greater than the minimum amount of time required to
finish an evaluation of f at any x. In other words, we can finish at most one function
evaluation per process per time step.

8



We revisit our example from the previous section and assume that the amount
of time required for each function evaluation varies. Obviously, for (2) this is a
contrivance we introduce for the sake of illustration; nonetheless, we use it to show
what we have seen can happen in practice [3].

In Figure 2 we illustrate which time steps on each process are spent computing a
function value and which are spent waiting for all the other processes to finish their
function evaluations. The solid vertical bars running across all processes indicate
the synchronization barrier inherent in PPS and signal both the end of the previous
iteration and the the start of the next iteration. The solid horizontal bars represent
time steps spent computing a function value; the small vertical bars represent the end
of a function evaluation (recall that the previous iteration ends with the initiation of
a function evaluation). The dots represent idle time.

t = 0 1 2 3 4 5 6 7 8

process 1

process 2

process 3

process 4

f(xk) = 25.0 13.0 5.0 1.0

k =0 1 2 3

Figure 2: An illustration showing which time steps on each process in our example
for PPS might be spent computing a function value versus sitting in an idle state.

Our illustration indicates that each function evaluation takes between 1 and 3
times steps. On average, each process is idle for roughly 3 of the 8 time steps in our
illustration (i.e., about 40% of the time steps). If we could somehow use the idle time
steps for computation, for this example we could potentially compute as many as
13 additional function evaluations (one per idle time step) through time step t = 8.
Though, in general, this may be unduly optimistic, it is reasonable to expect that we
should be able to compute more function values in the same number of time steps.

In the next section we show that APPS allows us to eliminate the idle time caused
by the synchronization barrier in PPS. We achieve this by resorting to a family of
adaptive, event-driven, peer-to-peer pattern search algorithms.

4 APPS

The general strategy for asynchronous parallel pattern search, from the perspective
of a single process i ∈ P , can be outlined as follows:

9



• evaluate f(xbest
i + ∆best

i di);

• if f(xbest
i + ∆best

i di) < f(xbesti ), then broadcast (non-blocking) the result to all
other processes;

• update local values xbest
i and ∆best

i based on current local information and any
messages that may have arrived from other processes;

• repeat.

By design, APPS removes the synchronization barrier in PPS, which is what
introduces the idle time seen in Figure 2. The price we pay—both to the specification
and to the analysis of APPS—is that each process has its own notion of the best
known point seen so far, as well as its own value for ∆. Any success on one process
is communicated to all other processes participating in the search, but the successful
process carries on from its new best point without waiting for a response from the
other processes. As it turns out, by adding a few mild conditions, we can still ensure
the global convergence of the search. And, in practice, we see better performance [3].

Before proceeding with an illustration of our asynchronous parallel strategy, we
introduce some useful notation.

4.1 Preliminary notation

First, we formalize the indexing by time steps. Instead of indexing based on a notion
of iterations, we switch to indexing based on time step, letting the set T = {1, 2, . . .}
denote the index of time steps. Thus, xti is used for the best point known to process
i at time step t. Similarly, ∆t

i is the value of the step-length control parameter on
process i at time step t. So if process i starts a function evaluation at time step t,
the trial point at which the function evaluation will be made is xti + ∆t

i di. As we
mentioned earlier, the time steps are assumed to be of fine enough resolution so that
at most one function evaluation finishes per process per time step.

4.1.1 Partitioning the time steps

We partition the time steps in T . We define two sets that satisfy T = Si ∪ Ui. The
set Si is the set of all time steps that are successful on process i, where by successful
we mean that xti is updated; i.e., a new best point has been found. The set Ui is the
complementary set of all time steps that are unsuccessful on process i.

We further partition Si as follows: Si = Ii∪Ei, where Ii is the set of time steps that
are internal successes on process i and Ei is the set of external successes on process i.
An internal success occurs when a new xti is found by process i. An external success
on process i occurs when xti is updated as a result of a message from some process
j ∈ P , j 6= i.

10



We also define the set Ci ⊆ Ui, where Ci is the set of time steps that are contractions
on process i. We define contractions to be those time steps at which ∆t

i is reduced.
Finally, the set Ui \Ci is the subset of time steps at which no interesting events occur,
i.e., xti = xt−1

i , and ∆t
i = ∆t−1

i .
We then define Ti as the subset of time steps at which an interesting event occurs

on process i (i.e., either xti and/or ∆t
i is/are changed) so that Ti = Si ∪ Ci.

4.1.2 Identifying the source of a change

For the purposes of the analysis, we need a way to identify the source of a change for
any given update. To this end, we introduce the following three generating functions:

ωi(t) = the generating process index for the update at time step t on process i,

νi(t) =
the time index for the completion of the function evaluation that
produced the update at time step t on process i, and

τi(t) =
the time index for the initiation of the function evaluation that
produced the update at time step t on process i.

Here ωi(·) : Si → P, νi(·) : Si → T , τi(·) : Si → T , and 0 ≤ τi(t) < νi(t) ≤ t.

4.1.3 Defining xti and ∆t
i

The generating functions allow us to give the following general definitions for xti and
∆t
i. For every t ∈ T , t > 0, the best point xti for process i ∈ P is defined to be:

xti =

{
x
τi(t)
ωi(t)

+ ∆
τi(t)
ωi(t)

dωi(t), if t ∈ Si, and

xt−1
i , otherwise.

(3)

We initialize the procedure with x0
i = x0, for all i ∈ P .

For every t ∈ T , t > 0, the step-length control parameter ∆t
i for process i ∈ P is

defined to be:

∆t
i =

 λ
νi(t)
ωi(t)

∆
τi(t)
ωi(t)

, if t ∈ Si,
θti∆

t−1
i , if t ∈ Ci, and

∆t−1
i , otherwise.

(4)

Again, the initialization is assumed to be ∆0
i = ∆0 for all i ∈ P . For the purposes of

our example, θti = 1
2

and λti ∈ {1, 2} for all i ∈ P and for all t ∈ T . These choices are
consistent with the full specifications for these parameters given in [4].

4.2 Applying APPS

We illustrate the first eight time steps of applying APPS to (2). Because each process
now acts as a semi-autonomous agent, we find it helpful to present the results in three
different formats.

11



t 0 1 2 3 4 5 6 7 8

finish f(trial1) – – 35.0 – 21.0 33.0 – 9.0 3.0
f(·) from 2 – – – – – – – – –
f(·) from 3 – – – – 17.0 – 19.0 – –

f(·) from 4 – – 13.0 5.0 1.0 – – – –

ω1(t) – – 4 4 4 – – – –
τ1(t) – – 0 1 2 – – – –
ν1(t) – – 1 2 3 – – – –
λt1 – – – – – – – – –
xt1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

5.0 5.0 4.0 3.0 1.0 1.0 1.0 1.0 1.0
f(xt1) 25.0 25.0 13.0 5.0 1.0 1.0 1.0 1.0 1.0
∆t

1 1.0 1.0 1.0 2.0 4.0 2.0 2.0 1.0 0.5
trial1 = 4.0 – 4.0 – 7.0 5.0 – 4.0 3.5
xt1 + ∆t

1 d1 5.0 – 4.0 – 1.0 1.0 – 1.0 1.5

finish f(trial2) – 41.0 – – 32.5 25.0 5.0 1.0 0.5
f(·) from 1 – – – – – – – – –

f(·) from 3 – – 17.0 19.0 – – – – –

f(·) from 4 – – – 1.0 13.0 5.0 – – –

ω2(t) – – 3 4 – – – – 2
τ2(t) – – 1 2 – – – – 7
ν2(t) – – 2 3 – – – – 8
λt2 – – – – – – – – 1
xt2 3.0 3.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0

5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.5
f(xt2) 25.0 25.0 17.0 1.0 1.0 1.0 1.0 1.0 0.5
∆t

2 1.0 0.5 2.0 4.0 4.0 2.0 1.0 0.5 0.5
trial2 = 3.0 3.0 – – 3.0 3.0 3.0 3.0 3.0
xt2 + ∆t

2 d2 6.0 5.5 – – 5.0 3.0 2.0 1.5 2.0

finish f(trial3) – 19.0 17.0 – – 25.0 – 33.0 9.0

f(·) from 1 – – – – – – – – –

f(·) from 2 – – – – – – – – 0.5
f(·) from 4 – – – 13.0 – 1.0 5.0 – –

ω3(t) – 3 3 4 – 4 – – 2
τ3(t) – 0 1 0 – 2 – – 7
ν3(t) – 1 2 1 – 3 – – 8
λt1 – 1 2 – – – – – –
xt3 3.0 2.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0

5.0 5.0 5.0 4.0 4.0 1.0 1.0 1.0 1.5
f(xt3) 25.0 19.0 17.0 13.0 13.0 1.0 1.0 1.0 0.5
∆t

3 1.0 1.0 2.0 1.0 1.0 4.0 4.0 2.0 0.5
trial3 = 2.0 1.0 -1.0 – – -1.0 – 1.0 2.5
xt3 + ∆t

3 d3 5.0 5.0 5.0 – – 1.0 – 1.0 1.5

finish f(trial4) – 13.0 5.0 1.0 – 41.0 – 13.0 5.0
f(·) from 1 – – – – – – – – –
f(·) from 2 – – – – – – – – –
f(·) from 3 – – 19.0 17.0 – – – – –
ω4(t) – 4 4 4 – – – – –
τ4(t) – 0 1 2 – – – – –
ν4(t) – 1 2 3 – – – – –
λt4 – 1 2 2 – – – – –
xt4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

5.0 4.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0
f(xt4) 25.0 13.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0
∆t

4 1.0 1.0 2.0 4.0 4.0 2.0 2.0 1.0 0.5
trial4 = 3.0 3.0 3.0 3.0 – 3.0 – 3.0 3.0
xt4 + ∆t

4 d4 4.0 3.0 1.0 -3.0 – -1.0 – 0.0 0.5

Table 1: Results from the first eight time steps of APPS applied to (2).

12



• Table 1 provides a complete accounting of all events across all four processes
up through time step t = 8. At every time step, we specify xti, f(xti), and
∆t
i. Where appropriate, we also specify the values for the generating functions,

expansion parameter, trial point, and trial and incoming function values. We
do not indicate the contraction parameter since we always choose θti = 1

2
for all

t ∈ Ci.

• Figure 3 represents some of the data from Table 1 using timelines. In particular,
we can see the start of each function evaluation (and the conclusion of the
previous function evaluation), represented using a vertical bar. We represent
internal successes, external successes, and contractions by circles, squares, and
×’s, respectively. Changes in f(xti) are shown underneath each timeline. This
figure is particularly useful for tracing messages. Solid arcs indicate messages
that result in an external success on the receiving process. Dotted arcs indicate
messages that have no effect on the receiving process (i.e., they simply are
discarded).

t = 0 1 2 3 4 5 6 7 8

-

f(xt1) = 25.0 13.0
�

5.0
�

1.0
� × × ×

-

f(xt2) = 25.0
×

17.0
�

1.0
� × × × u

0.5

?
-

f(xt3) = 25.0 19.0

�

�

R

u
17.0

6

R

I

u
13.0
�

1.0
� ×

0.5
�

-

f(xt4) = 25.0 13.0

�

�

O

u
5.0

�

6

�

u
1.0

�

I

1

u × × ×

Figure 3: Timelines illustrating the first eight time steps of APPS applied to (2).

• Figures 4–5 illustrate the first eight time steps of APPS applied to (2). The
illustrations are similar to those for PPS given in Figure 1. However, unlike
PPS, up to p different best points may have been used to construct the trial
points being evaluated at any time step; see, e.g., Figure 4(b). Also, up to
p different values of the step-length control parameter may have been used to
construct the trial points being evaluated at any time step; see, e.g., Figure 4(c).

13



−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(a) t = 1

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(b) t = 2

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(c) t = 3

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(d) t = 4

Figure 4: Asynchronous parallel pattern search applied to (2)

To give a sense of how to interpret these various representations, we highlight a
few situations.

4.2.1 An internal success

At time step t = 0, process 4 starts a function evaluation at the trial point x0
4+∆0

4d4 =
(3.0, 5.0)T + (1.0) · (0,−1)T = (3.0, 4.0)T . The function evaluation at this trial point
finishes at time step t = 1 with a function value of 13.0. This is an internal success,

14



−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(a) t = 5

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(b) t = 6

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(c) t = 7

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(d) t = 8

Figure 5: Asynchronous parallel pattern search applied to (2)

i.e., time step t = 1 ∈ I4. Since the generating functions map from the set of
successful time steps, in Table 1 we show their values whenever a time step is a
success. In this case, ω4(1) = 4, τ4(1) = 0, and ν4(1) = 1. Since the time step is
an internal success, we also specify the expansion parameter. In this case, λ1

4 = 1.
The fact that the time step is an internal success means that we update both the
best point and the step-length control parameter. In this case, x1

4 = (3.0, 4.0)T and
∆1

4 = λ1
4∆0

4 = 1 · (1.0) = 1.0. Finally, process 4 ends the time step by constructing

15



the new trial point x1
4 + ∆1

4d4 = (3.0, 4.0)T + (1.0) · (0,−1)T = (3.0, 3.0)T .

In Figure 4(a) we show the new best point and the new trial point for process 4,
as well as the activities associated with to the other three processes. The information
from the previous time step (equivalent to the situation illustrated in Figure 1(a)) is
presented in gray. Note that by time step t = 1 the progress of the search conducted
by APPS already differs markedly from the process of the search conducted by PPS.
In particular, note that for APPS there are now three different best points and two
different values of the step-length control parameter in use across the four processes.

Turning to Figure 3 we get a clear picture of how the message traffic influences
decisions local to each process. In this case, the internal success on process 4 at time
step t = 1 is indicated by a black circle on the timeline for process 4. Further, we can
see that the messages regarding this point are received by processes 1, 2, and 3 at
time steps t = 2, t = 4, and t = 3, respectively. The timelines for the remaining three
processes illustrate that when the messages sent by process 4 announcing its internal
success at time step t = 1 arrive on processes 1 and 3 they trigger external successes
on those two processes. However, when it finally arrives, the same information has
no direct effect on process 2.

4.2.2 An external success

At time step t = 3, process 2 receives messages from both process 3 and process
4. We can see this on the timeline in Figure 3 as well as in Table 1. The best of
the messages is from process 4 with a function value of 1.0, so the message from
process 3 is discarded. Since the function value of 1.0 from process 4 improves upon
f(x2

2) = 17.0, we have an external success on process 2 (i.e., time step t = 3 ∈ E2).
In Figure 3, this is denoted by a square box. Once again we have a success so, as
shown in Table 1, ω2(3) = 4, τ2(3) = 2, and ν2(3) = 3 (i.e., the new best point was
constructed by process 4 at time step t = 2 and its function evaluation finished at
time step t = 3).

We update both the best point and the step-length control parameter using infor-
mation contained in the message from process 4. So x3

2 = (3.0, 1.0)T , which is equiva-

lent to x2
4 + ∆2

4d4 or, consistent with the definition given in (3), x
τ2(3)
ω2(3) + ∆

τ2(3)
ω2(3) dω2(3).

A perusal of the complete accounting given in Table 1 verifies this equivalence. Also,
∆3

2 = 4.0, which is equivalent to λ3
4∆2

4 = 2 · (2.0) or, consistent with the definition

given in (4), λ
ν2(3)
ω2(3)∆

τ2(3)
ω2(3). This example illustrates how the generating functions,

crafted solely for the analysis, allow us to track an update that arrives in a message
from another process back both to the originating process and to the time steps at
which critical values were established on the originating process.

Finally, observe that even though the values of x3
2 and ∆3

2 have been updated,
APPS does not construct a new trial point and begin its evaluation at this time step
since process 2 is still in the midst of a function evaluation. We can see this, for
example, in Figure 3, where on the timeline for process 2 there is no vertical bar

16



at time step t = 3. We can also see this in Figure 4, where process 2 continues its
evaluation of the trial point (3.0, 5.5)T , which it constructed at time step t = 1. A
new function evaluation will not commence on process 2 until the current evaluation
finishes; in this case, at time step t = 4. These actions are fully documented in
Table 1.

4.2.3 A contraction

At time step t = 7 on process 1, the function evaluation that started at time step t = 5
finishes. The function value of 9.0 at the trial point (5.0, 1.0)T does not improve upon
f(x6

1) = 1.0, so this time step is not an internal success. Furthermore, no external
success has occurred since the evaluation of (5.0, 1.0)T was started at time step t = 5.
Therefore, this time step is a contraction on process 1, i.e., time step t = 7 ∈ C1.

We update the step-length control parameter following our definition in (4): ∆7
1 =

θ7
1∆6

1 = 1
2
· (2.0) = 1.0. (As noted earlier, we do not specify θti in Table 1 since, for

this example, we always use θti = 1
2
.) Observe that we do not need, and thus do not

define, values for the generating functions since the decisions regarding a contraction
are local to the process.

The new trial point is then constructed using this reduced value of the step-
length control parameter: x7

1 + ∆7
1 d1 = (3.0, 1.0)T + (1.0) · (1, 0)T = (4.0, 1.0)T . A

new function evaluation is initiated at this trial point, as seen in Figure 5(c).

4.2.4 Revisiting the partitioning of the time steps

Now that we have some familiarity with the different representations of APPS when
applied to (2), as well as with what constitutes “interesting events,” we can revisit
the definitions from §4.1.1 in terms of our example. Let T̂ = {1, . . . , 8}. We then
summarize the categorization of each time step in T̂ on every process in P :

I1 ∩ T̂ = ∅ I2 ∩ T̂ = {8}
E1 ∩ T̂ = {2, 3, 4} E2 ∩ T̂ = {2, 3}
S1 ∩ T̂ = {2, 3, 4} S2 ∩ T̂ = {2, 3, 8}
C1 ∩ T̂ = {5, 7, 8} C2 ∩ T̂ = {1, 5, 6, 7}
U1 ∩ T̂ = {1, 5, 6, 7, 8} U2 ∩ T̂ = {1, 4, 5, 6, 7}
T1 ∩ T̂ = {2, 3, 4, 5, 7, 8} T2 ∩ T̂ = {1, 2, 3, 5, 6, 7, 8}

I3 ∩ T̂ = {1, 2} I4 ∩ T̂ = {1, 2, 3}
E3 ∩ T̂ = {3, 5, 8} E4 ∩ T̂ = ∅
S3 ∩ T̂ = {1, 2, 3, 5, 8} S4 ∩ T̂ = {1, 2, 3}
C3 ∩ T̂ = {7} C4 ∩ T̂ = {5, 7, 8}
U3 ∩ T̂ = {4, 6, 7} U4 ∩ T̂ = {4, 5, 6, 7, 8}
T3 ∩ T̂ = {1, 2, 3, 5, 7, 8} T4 ∩ T̂ = {1, 2, 3, 5, 7, 8}

(5)

Note that these sets are easily constructed by looking at the timelines in Figure 3.
Alternatively, they can be constructed by reviewing the entries in Table 1.

17



5 Contrasting APPS and PPS

As we can see from our example, APPS has no idle time between function evaluations.
Each process constructs a new trial point and initiates a new evaluation of the objec-
tive function at that trial point as soon as it finishes its previous function evaluation
and whatever updates are necessary. This difference between APPS and PPS is ap-
parent at the end of time step t = 1. As Figure 2 makes clear, PPS requires processes
2–4 to wait (i.e., idle) until the function evaluation on process 1 finishes. Thus the
four new function evaluations initiated at iteration k = 1, shown in Figure 1(b), do
not actually begin until time step t = 2.

In contrast, APPS immediately begins new function evaluations on processes 2–4
at time step t = 1, despite the fact that process 1 has not yet finished its function
evaluation. Furthermore, there is no synchronization of information across processes.
As a consequence, process 2 has a contraction, and processes 3 and 4 each have internal
successes on which to base their next trial point. This is illustrated in Figure 4(a).

By time step t = 2 we can already see the value of eliminating the idle time.
Under APPS, process 3 already has discovered the function value f(x2

4) = 5.0 at the
point x2

4 = (3.0, 3.0)T (see Table 1). The search using PPS does not discover this
point until time step t = 3 (see Figure 1 and Figure 2). Under APPS, process 4 can
immediately make use of this discovery to construct a new trial point at (3.0, 1.0)T

and initiate a function evaluation at this trial point. Under PPS, process 4 must wait
until time step t = 5 to construct the trial point (3.0, 1.0)T and initiate a function
evaluation at this trial point.

The cumulative effect of eliminating idle time becomes even more apparent by the
end of eight time steps. At time step t = 8, the best known function value for APPS
is f(x8

3) = 0.5. For PPS, the best known function value is f(x4) = 1.0. Of equal
importance is the fact that at time step t = 8 the step-length control parameter is
0.5 on all four APPS processes, though they have arrived at this common value by
different means. In contrast, the synchronization ensures that all four PPS processes
share the value of 4.0 for the step-length control parameter. The consequence of this
significant difference in the scaling of the steps is that for APPS, the search is on a
scale that is much more appropriate, given the current neighborhood of the search. It
takes only a modest extrapolation to future time steps to see that APPS will realize
further decreases in the value of the objective more quickly than PPS. Thus we can
see that, when the number of time steps required to finish a function evaluation varies,
the asynchronous nature of APPS makes it possible to get to lower objective function
values more quickly than PPS.

Before we close this discussion we note that although in theory APPS has no
idle time, the termination criteria introduces some idle time once we have reason to
believe we are reasonably close to a solution. In [3] we discuss the stopping criterion
for APPS in detail. The difference between APPS and PPS in practice, though, is
that for APPS this idle time only occurs when some subset of the processes believe

18



that they have identified a possible solution. This subset of processes must wait until
either a sufficient number of processes agree that a solution has been identified or
some other process produces a new best point. This is a situation we expect to see
only infrequently and then only towards the end of the search. In contrast, in PPS
idle time can occur at each iteration. The results reported in [3] suggest that our
expectation appears to be realized in practice.

6 Tracking iterates across processes

The real challenge to analyzing APPS lies in determining the origin of a given iterate.
Addressing this question precipitated the seemingly complicated notation we have
introduced.

To appreciate the timing effects our analysis must accommodate, we revisit our
example from §4 and consider what happens on process 3 (the third timeline from
the top in Figure 3). If we look at Table 1, it is clear that up through time step t = 8
the subsequence of (distinct) best points on process 3 is:

{
x0

3, x
1
3, x

2
3, x

3
3, x

5
3, x

8
3

}
=
{(

3.0
5.0

)
,

(
2.0
5.0

)
,

(
1.0
5.0

)
,

(
3.0
4.0

)
,

(
3.0
1.0

)
,

(
3.0
1.5

)}
. (6)

These correspond exactly to the best points at the time steps {0} ∪ {S3 ∩ T̂ } (recall
the partitioning of the time steps given in (5)). But for the purposes of the analysis,
the sequence in (6) is irrelevant. What we really need to know is what sequence of
moves brought the search to the current best point x8

3 = (3.0, 1.5)T . To obtain this
information we need to be able to track what happened on other processes. This is
where the generating functions play a crucial role. Using our generating functions,
we can recover the sequence

{
x0

4, x
1
4, x

2
4, x

3
2 = x3

4, x
8
3 = x8

2

}
=
{(

3.0
5.0

)
,

(
3.0
4.0

)
,

(
3.0
3.0

)
,

(
3.0
1.0

)
,

(
3.0
1.5

)}
, (7)

which explains how we actually arrived at x8
3. It is critical to note that the sequence

in (7) could not be recovered simply by looking at the sequence in (6).
In summary, to analyze APPS, we must be able to identify which process produced

the update. Further, the update rules for the iterate, given in (3), mean that if t ∈ Si
we need to be able to identify the time step at which the function evaluation started
so that we can recover both the iterate and the value of the step-length control
parameter used to construct the successful point. In addition, the update rules for
the step-length control parameter, given in (4), mean that if t ∈ Si, we also need to
be able to identify the time step at which the function evaluation finished so that we
can recover the value of λti used in the update.

The reason we need this information is that we use it, in part, to verify the
algebraic structure of the iterates. In particular, in [4], we derive a result equivalent
to Theorem 3.2 in [7]. Verifying the algebraic structure of the iterates assures us that

19



we have a step-length control mechanism which prevents premature convergence.
We obtain this assurance even though the APPS processes act as semi-autonomous
agents that can either contract or expand ∆t

i independently, subject to only a mild
modification of the basic rules first outlined in [7].

To see this, we once again return to our example from §4. If we consider x8
3, we see

that our ability to track the sequence of iterates across processes allows us to write
x8

3 as the initial guess, x0, plus a linear combination of the search directions in D, as
follows:

x8
3 = x8

2

= x7
2 + ∆7

2d2

= x3
4 + ∆7

2d2

=
(
x2

4 + ∆2
4d4

)
+ ∆7

2d2

=
(
x1

4 + ∆1
4d4

)
+ ∆2

4d4 + ∆7
2d2

=
(
x0

4 + ∆0
4d4

)
+ ∆1

4d4 + ∆2
4d4 + ∆7

2d2

= x0 +
(
∆7

2

)
d2 +

(
∆0

4 + ∆1
4 + ∆2

4

)
d4

This claim for x8
3 in fact holds for any xti produced by APPS, a fact which we

prove in Lemma 4.1 in [4]. More precisely, we say that

xti = x0 +
∑
j∈P

δj(i, t) dj with δj(i, t) =
∑

t̂∈Îj(i,t)

∆
τj( t̂ )
j ,

where δj(i, t) = 0 if Îj(i, t) = ∅ and Îj(i, t) is constructed recursively using the formula

Îj(i, t) =


∅ if t = 0,

Îj(ωi(t), τi(t)) ∪ {νi(t)} if t ∈ Si and j = ωi(t),

Îj(ωi(t), τi(t)) if t ∈ Si and j 6= ωi(t), and

Îj(i, t− 1) otherwise.

Returning to x8
3, as an example we have the following:

Î1(3, 8) = ∅, Î2(3, 8) = {8}, Î3(3, 8) = ∅, and Î4(3, 8) = {1, 2, 3}.

In other words, the sets Îj(3, 8), j = {1, 2, 3, 4}, indicate which internal successes, on
which processes, contributed to the discovery of the best point on process 3 at time
step t = 8. Using this information, we can determine the multiplier for each search
direction

δ1(3, 8) = 0, δ2(3, 8) = ∆
τ2(8)
2 = ∆7

2,

δ3(3, 8) = 0, δ4(3, 8) =
(

∆
τ4(1)
4 + ∆

τ4(2)
4 + ∆

τ4(3)
4

)
= (∆0

4 + ∆1
4 + ∆2

4) .

20



Thus we have a rigorous way to obtain conclusions equivalent to

x8
3 = x0 +

(
∆7

2

)
d2 +

(
∆0

4 + ∆1
4 + ∆2

4

)
d4

for any choice of xti.
Next, we examine the non-zero values of δj(i, t) more carefully. For δ2(3, 8), we

have

δ2(3, 8) = ∆7
2

= 2−1 ·∆6
2

...

= 2−1 · 2−1 · 2−1 · 21 · 21 · 20 ·∆0
4

= 2−1∆0

Similarly, for δ4(3, 8), we get

δ4(3, 8) = ∆0
4 +

(
20 ·∆0

4

)
+
(
21 · 20 ·∆0

4

)
=

(
20 + 20 + 21

)
∆0.

By factoring out 2−1∆0, the shortest successful search step used to reach the current
iterate, in both cases we are left with an integer:

δ2(3, 8) = 20︸︷︷︸
integer

· (2−1∆0) δ4(3, 8) =
(
21 + 21 + 22

)︸ ︷︷ ︸
integer

· (2−1∆0) .

If we were to take the lattice of all possible integer combinations of the search direc-
tions in D, scale it by 2−1∆0, and translate it by x0, we can convince ourselves that
the point x8

3 actually lies on that lattice. So, for x8
3 we have

x8
3 = x0 + 1 ·

(
2−1∆0

)
d2 + 8 ·

(
2−1∆0

)
d4.

We now are back on familiar territory for pattern search analysis. Theorem 4.2 in
[4] guarantees that every successful point produced by the search up until time step
t will lie on the lattice formed by the search directions in D, translated by x0, and
scaled by 2Γ∆0, where 2Γ∆0 is the shortest successful search step taken up until time
step t. What is important to make this result hold is that the search directions in D
are rational and that we choose the θ’s and λ’s so that they are powers of a positive
integer constant, with 2 being the usual choice and the one we used for our example.

We hasten to repeat that all this bookkeeping is not necessary to implement
APPS, only to analyze it. One of the features of pattern search methods is that they
are, in some sense, “memory-less”. All any process i ∈ P really needs to know to
proceed with the search is xti, ∆t

i, di, and f(xti) since the next trial point xti + ∆t
i di

then can be constructed and f(xti) gives the target value that f(xti + ∆t
i di) must beat

for xti + ∆t
i di to become the new best point.

21



7 Conclusions

We have concentrated here on elucidating the concepts and notation required to track
the iterates produced by APPS across processes so that we are able to show that there
is at least one subsequence of iterates that is common to all processes. The global
convergence argument given in [4] has four basic parts. First, we verify the algebraic
structure of the iterates. Second, we show that the subset of time steps at which
changes occur either to the best point or to the step-length control parameter is
infinite. Third, we prove that a subsequence of the step-length control parameters
goes to zero. Finally, we ascertain that there exists a common accumulation point
for all processes and that this accumulation point has a zero gradient.

To handle the asynchronous nature of the search, we rely on the assumption that
the number of time steps required either for a function evaluation to finish or for a
message to arrive from another process are bounded above by finite constants. This
allows us to tie together the relative timing of events as the time steps go to infinity
and thus guarantee the existence of an accumulation point that is common to all the
processes.

Once we identify an “interesting” subsequence of iterates (with their associated
values for the step-length control parameter) that is common to all the processes, we
use by now standard arguments to finish the analysis.

Acknowledgments

We thank the organizers of the International School of Mathematics “G. Stampacchia”
33rd Workshop: High Performance Algorithms and Software for Nonlinear Optimiza-
tion for the opportunity to present a summary of our work on asynchronous parallel
pattern search.

22



References

[1] M. Avriel. (1976), Nonlinear Programming: Analysis and Methods, Prentice-Hall,
Englewood Cliffs, New Jersey.

[2] D. Bertsekas and J. Tsitsiklis. (1989), Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey.

[3] P. D. Hough, T. G. Kolda, and V. J. Torczon (2001), “Asynchronous parallel
pattern search for nonlinear optimization,” SIAM J. Scientific Computing, 23,
pp. 134–156.

[4] T. G. Kolda and V. J. Torczon (2001) “On the convergence of asynchronous par-
allel pattern search,” Tech. Rep. SAND2001–8696, Sandia National Laboratories,
Livermore, California.

[5] D. Levine (1995) “Users guide to the PGAPack parallel genetic algorithm li-
brary,” Tech. Rep. ANL–95/18, Argonne National Laboratory, Argonne, Illinois.

[6] V. Torczon (1992), “PDS: Direct search methods for unconstrained optimization
on either sequential or parallel machines,” Tech. Rep. 92–09, Rice University,
Department of Computational and Applied Mathematics, Houston, Texas.

[7] V. Torczon (1997), “On the convergence of pattern search algorithms,” SIAM J.
Optim., 7, pp. 1–25.

23


